Index de l'article

 

Discussion et conclusion

 

En 2017, la visualisation utilisant des techniques physiques sophistiquées par l’utilisation des infrarouges ou des radiotraceurs ne fait pas l’objet d’un consensus scientifique international en raison de nombreux biais méthodologiques : faible population, pas de groupe témoin, interprétation contradictoire des phénomènes observés, etc. Les mesures des impédances et résistances électriques cutanées pour identifier les points d'acupuncture le long des méridiens ont été incapables de prouver leur capacité à réaliser une discrimination entre points et non-points. Tout au plus, relève-t-on une moindre impédance cutanée sur des portions de quelques méridiens. De même, la structure anatomique des méridiens et a fortiori des points d’acupuncture de la médecine chinoise qui les différencie des tissus environnants est encore sujet à caution.

Certes, les différentes observations comme le système primo vasculaire de Bonghan, les voies du fluide extracellulaire du tissu conjonctif ou de l’espace périvasculaire semblent répondre à l’attente de tout acupuncteur mais ne restent pour l’instant qu’au stade de conjectures car les travaux n’ont toujours pas été reproduits en dehors de certains laboratoires. Par exemple, est-il possible ainsi de faire un rapprochement entre les structures linéaires longitudinales retrouvées chez le poisson et celles visualisées par thermographie ou radiotraceur qui sembleraient être des méridiens chez l’homme ? Tout cela peut contribuer au scepticisme entourant l'acupuncture en Occident.

Sur la base de raisonnements scientifiques bien conduits ne souffrant pas d’erreurs méthodologiques, le paradigme du tissu conjonctif lâche semble alors résonner comme le seul substratum du méridien d’acupuncture.

Langevin et coll., vont plus loin en adhérant à un concept d’une matrice du tissu conjonctif lâche, diffuse qui imprègnerait et relierait toutes les parties du corps humain et correspondrait en fait au système des Jinglo, le réseau des douze méridiens principaux associés aux deux Merveilleux Vaisseaux ayant leurs points propres (renmai VC et dumai VG), connectés aux organes internes [[59]]. La recherche en acupuncture a contribué d’ailleurs à une tendance au sein de la biomédecine à s’intéresser au domaine de la mécanotransduction qui permet de mieux connaître les voies des molécules de signalisation, la translocation des facteurs de transcription dans le noyau et les changements dans l'expression des gènes sur les cellules mises en culture in vitro [[60],[61]]. De fait, les études cliniques réalisées sur tissu vivant grâce à l’acupuncture prolongent ce travail dans l'ensemble. L'aiguille d'acupuncture fournit ainsi une méthode pour délivrer le signal mécanique précis qui peut produire des réponses dose-dépendantes dans les fibroblastes de tissu conjonctif lâche. MacPherson et coll. signalent d’ailleurs qu’avant ces études d'acupuncture, les fonctions des fibroblastes étaient quasi inconnues et que par cette occasion, cela a permis de contribuer à une meilleure compréhension de la pathologie du tissu conjonctif associée à des douleurs musculo-squelettiques chroniques et aux fibroses [[62]]. De même, les progrès récents dans la biologie du cancer soulignent l'importance du tissu conjonctif dans l'environnement tumoral local qui peut subir inflammation et fibrose engendrant une certaine rigidité du tissu conjonctif, facteur déterminant de la croissance tumorale. Des thérapies physiques telles que massage et acupuncture, en réduisant l'inflammation et la fibrose des tissus conjonctifs peuvent donc avoir des effets bénéfiques directs sur, par exemple, le lymphœdème  lié à l’ablation des ganglions axillaires après chirurgie du cancer du sein [[63],[64],[65],[66]], même si une possible propagation métastasique est encore débattue [[67]].

En conclusion, il apparaît que si le méridien d’acupuncture existait réellement, seul le tissu conjonctif lâche pourrait prétendre à en être le substratum, baigné ou pas dans un liquide interstitiel à faible impédance électrique et bénéficiant d’un flux lié à une faible résistance hydraulique. Mais, plus vraisemblablement, le point ou le méridien n’existe que si une force mécanique appliquée par l’aiguille sur un site précis du corps humain, nommé point d’acupuncture plus riche en bandes de fibres de collagènes, engendre une cascade de réactions biologiques appelée mécanotransduction.

 

 

 

Notes

 

[1]. Produite par les fibroblastes, la matrice extracellulaire se compose de fibres conjonctives (collagènes ou élastiques) baignant dans la substance fondamentale et de glycoprotéines de structure et d'adhésion. Gel hydraté, la substance fondamentale est formée par les glycosaminoglycanes (GAG) et les protéoglycanes. Les glycoprotéines de structure, associées aux fibres conjonctives et à la substance fondamentale et liées par les intégrines, récepteurs spécifiques en surface des cellules épithéliales et des cellules conjonctives participent de façon majeure à la mécanotransduction, en rapport avec l’effet de la recherche du deqi [8].

[2]. Le tissu conjonctif lâche se caractérise par la présence entre ses cellules d’une très abondante matrice extra-cellulaire  riche en fibres collagènes, élastiques et d’une substance fondamentale. Les tissus conjonctifs fibreux denses contiennent quant à eux essentiellement des fibres de collagène ; ils se répartissent en deux sous-groupes : les tissus fibreux non orientés (derme, périoste, capsules articulaires, dure-mère, capsules des organes pleins (comme le foie, la rate, les reins..) ; et les tissus fibreux orientés (unitendus : ligaments et tendons, ou bitendus : aponévroses et stroma de la cornée) [consulté le 30/04/2017]. Disponible à l’URL: http://www.chups.jussieu.fr/polys/histo/histoP1/conjonctifadipeux.html

[3]. La fasciathérapie, très proche de l’ostéopathie, est une technique manuelle, apparue dans les années 1980 en France. Elle est appliquée essentiellement par des praticiens de formation masseurs kinésithérapeutes. Elle agirait sur toutes les structures du corps (os, articulations, ligaments, muscles, artères, cœur, poumons, intestins..). Néanmoins, un travail universitaire de recherche qui a étudié de façon exhaustive la bibliographie de la fasciathérapie jusqu'en juin 2011, concluait qu’il n’y avait aucune publication démontrant l'efficacité propre de la fasciathérapie, selon le modèle biomédical (Darbois N. La Fasciathérapie « méthode Danis Bois ». Niveau de preuve d’une pratique de soin conventionnel. Mémoire de diplôme d’état de Masseur-Kinésithérapeute et Master 1 Mouvement Performance Santé Ingénierie. Grenoble: Université Joseph Fourrier. Ecole de Kinésithérapie ; 2012) ; [consulté le 30/04/2017]. Disponible à l’URL: https://cortecs.org/wp-content/uploads/2014/01/CorteX_Darbois_Memoire_Fasciatherapie.pdf).

[4]. La loi d'Ohm relie l'intensité I du courant à la valeur R de la résistance et à la tension U entre ses bornes par la relation U = R.I. En courant continu, la résistance R s'exprime en ohms (Ω). En courant alternatif, c’est Z qui ets l’impédance.  L'unité de Z est l'ohm [Ω] tout comme la résistance dans un courant continu : U=Z.I. La conductance électrique est une représentation de la capacité d'un corps à laisser passer le courant. Elle est donc l'inverse de la résistance.

[5]. L'un des premiers scientifiques à explorer cette voie fut Yoshio Nakatani qui, dans les années 1950 au Japon, observa une baisse de la résistance électrique de la peau selon des lignes longitudinales qui reproduisaient en gros le trajet des méridiens. Il appela ces lignes : ryodoraku qui signifie « ligne de haute conductance électrique ». Par ailleurs, il découvrit que la résistance électrique de certains points était plus basse (ryodoten) que celle des tissus environnants, coïncidant plus ou moins bien avec les points chinois d'acupuncture) [6].

[6]. Créé par Claude Bernard, le terme de milieu intérieur désigne le liquide interstitiel qui baigne toutes les cellules du corps et qui provient du passage des constituants du plasma sanguin à travers la paroi des capillaires sanguins. Il en résulte que la composition du milieu intérieur dépend étroitement de celle du sang. Le milieu intérieur comporte trois compartiments liquidiens : l’un est non limité par une paroi propre et où circulent les cellules comme les fibroblastes ;  c’est le liquide interstitiel qui est en relation avec les deux autres par filtration et /ou réabsorption avec le sang et la lymphe, liquides des vaisseaux sanguins ou lymphatiques. Le liquide interstitiel ou interstitium, ayant une composition ionique proche de celle du plasma sanguin remplit donc l'espace entre les capillaires sanguins et les cellules en facilitant les échanges de nutriments et de déchets.

[7]. La motilité des cellules correspond à leur aptitude à effectuer des mouvements spontanés ou réactionnels engendrant donc une migration des cellules induite par des facteurs chimiques et/ou physiques (comme la mécanotransduction) dans le microenvironnement. La chimiotaxie est induite par un gradient de facteur chimioattractant (facteur de croissance, etc.), alors que la durotaxie est induite par un gradient de rigidité dans la matrice extracellulaire.

 

 Références

[1]. Zhang Ruilin. Traduction Marie-Emmanuelle Gatineaud. Mon point de vue sur la paternité du “Classique des 81 difficultés en Acupuncture” (Nanjing). Acupuncture & Moxibustion. 2007;6(1):8-13. 

[2]. Nastari-Micheli E. Traité n. 20 du Linghsu (Lingshu-V.20) Étude Philologique et Traduction, première partie. Acupuncture & Moxibustion. 2016;15(4):260-268.

[3]. Delacour C. In: Réunion des Musées Nationaux (France). La voie du Tao, un autre chemin de l’être. Paris: Rmn; 2010. p.242.

[4]. Stéphan JM. Les Textes Classiques : Yijing, Neijing, Nanjing, Shanghanlun, Jiayijing, Dacheng. Acupuncture & Moxibustion. 2010;9(4):290-301.

[5]. Longhurst JC. Defining meridians: a modern basis of understanding. J Acupunct Meridian Stud. 2010;3(2):67-74.

[6]. Stéphan JM.  A la recherche de la réalité biophysique du point d’acupuncture. Acupuncture & Moxibustion. 2004;3(4):269-274.

[7]. Stéphan JM. A la recherche du substratum anatomique du point d’acupuncture. Acupuncture & Moxibustion. 2006;5(3):252-261.

[8]. Stéphan JM. Acupuncture, tissu conjonctif et mécanotransduction. Acupuncture & Moxibustion. 2006;5(4):362-367.

[9]. Langevin HM, Yandow JA. Relationship of acupuncture points and meridians to connective tissue planes.Anat Rec.2002;269(6):257-65.

[10]. Langevin HM, Huijing PA. Communicating about fascia: history, pitfalls, and recommendations. Int J Ther Massage Bodywork. 2009;2(4):3-8.

[11]. Bai Y, Wang J, Wu JP, Dai JX, Sha O, Tai Wai Yew D, Yuan L, Liang QN. Review of evidence suggesting that the fascia network could be the anatomical basis for  acupoints and meridians in the human body. Evid Based Complement Alternat Med. 2011;2011:260510. doi: 10.1155/2011/260510.

[12]. Julias M, Edgar LT, Buettner HM, Shreiber DI. An in vitro assay of collagen fiber alignment by acupuncture needle rotation. Biomed Eng Online. 2008;7:19.

[13]. Yu X, Ding G, Huang H, Lin J, Yao W, Zhan R. Role of collagen fibers in acupuncture analgesia therapy on rats. Connect Tissue Res. 2009;50(2):110-20.

[14]. Wang F, Cui GW, Kuai L, Xu JM, Zhang TT, Cheng HJ, Dong HS, Dong GT. Role of Acupoint Area Collagen Fibers in Anti-Inflammation of Acupuncture Lifting and Thrusting Manipulation. Evidence-Based Complementary and Alternative Medicine. 2017;2017(Article ID 2813437). doi:10.1155/2017/2813437. [consulté le 01/05/2017]. Disponible à l’URL: https://www.hindawi.com/journals/ecam/2017/2813437/cta/

[15]. Ho MW, Knight DP. The acupuncture system and the liquid crystalline collagen fibers of the connective tissues. Am J Chin Med. 1998;26(3-4):251-63.

[16]. Ahn AC, Wu J, Badger GJ, Hammerschlag R, Langevin HM. Electrical impedance along connective tissue planes associated with acupuncture meridians. BMC  Complement Altern Med. 2005;5:10.

[17].Ahn AC, Colbert AP, Anderson BJ, Martinsen OG, Hammerschlag R, Cina S, Wayne PM, Langevin HM. Electrical properties of acupuncture points and meridians: a systematic review. Bioelectromagnetics. 2008;29(4):245-56. 

[18]. Ahn AC, Park M, Shaw JR, McManus CA, Kaptchuk TJ, Langevin HM. Electrical impedance of acupuncture meridians: the relevance of subcutaneous collagenous bands. PLoS One. 2010;5(7):e11907.

[19]. Kim B. On the Kyungrak systeme. Medical Science Press, Pongyang, Korea,1963

[20]. Jiang X, Kim HK, Shin HS, Lee BC, Choi C, Soh KS, Cheun BS, yoon Baik K, Soh KS. Thread-like bundle of tubules running inside blood vessels: New anatomical structure. 2002. [consulté le 28/04/2017]. Disponible à l’URL: http://arxiv.org/PS_cache/physics/pdf/0211/0211085.pdf

[21]. Lee BC, Choi C, Baik KY, Soh KS. Method for Observing Intravascular BongHan Duct. Korean J orient Prevent Med Soc. 2002;6:162-166.

[22]. Lee BC, Baik KY, Johng HM, Nam TJ, Lee J, Sung B, Choi C, Park WH, Park ES, Park DH, Yoon YS, Soh KS. Acridine orange staining method to reveal the characteristic features of an intravascular threadlike structure. Anat Rec 2004 ;278B(1):27-30. 

[23]. Soh KS. Bonghan circulatory system as an extension of acupuncture meridians. J Acupunct Meridian Stud. 2009;2(2):93-106.

[24]. Ogay V, Bae KH, Kim KW, Soh KS. Comparison of the characteristic features of Bonghan ducts, blood and lymphatic capillaries. J Acupunct Meridian Stud. 2009;2(2):107-17. 

[25]. Stefanov M, Potroz M, Kim J, Lim J, Cha R, Nam MH. The primo vascular system as a new anatomical system. J Acupunct Meridian Stud. 2013;6(6):331-8.

[26]. Kim HG. Formative research on the primo vascular system and acceptance by the  korean scientific community: the gap between creative basic science and practical convergence technology. J Acupunct Meridian Stud. 2013;6(6):319-30. 

[27]. Kang KA. Historical observations on the half-century freeze in research between the Bonghan system and the primo vascular system. J Acupunct Meridian Stud. 2013;6(6):285-92.

[28]. Lee HS, Kang DI, Yoon SZ, Ryu YH, Lee I, Kim HG, Lee BC, Lee KB. Evidence for novel age-dependent network structures as a putative primo vascular network in the dura mater of the rat brain. Neural Regen Res. 2015;10(7):1101-6.

[29]. Schlebusch KP, Maric-Oehler W, Popp FA. Biophotonics in the infrared spectral range reveal acupuncture meridian structure of the body. J Altern Complement Med. 2005;11(1):171-3.

[30]. Popp FA, Maric-Oehler W, Schlebusch KP, Klimek W. Evidence of light-piping (meridian-like channels) in the

human body and nonlocal EMF effects. Electromagnetic Biology and Medicine 2005;24:359-74.

[31].Yang HQ, Xie SS, Hu XL, Chen L, Li H. Appearance of human meridian-like structure and acupoints and its time correlation by infrared thermal imaging. Am J Chin Med. 2007;35(2):231-40.

[32]. Litscher G. Infrared thermography fails to visualize stimulation-induced meridian-like structures. Biomed Eng Online. 2005;4(1):38.

[33]. Chen R, Lv Z. Infrared thermography fails to visualize stimulation-induced meridian-like structures: comment by Rixin Chen and Zhimai Lv and reply from Gerhard Litscher. Biomed Eng Online. 2011;10:80; author reply 80.

[34].  Litscher G, Ammer K. Visualization of equipment dependent measurement errors, but not of meridian-like channels in complementary medicine - a thermographic human cadaver study. Thermology international. 2007;17(1):32–35.

[35]. Litscher G. "Meridian-like channels" in dead human subjects?: A negative result. The Internet Journal of Alternative Medicine. 2006;4(1). [consulté le 28/04/2017]. Disponible à l’URL: https://print.ispub.com/api/0/ispub-article/4593.

[36]. De Vernejoul P, Darras JC, Beguin C, Cazalaa JB, Daury G, de Vernejoul J. Approche isotopique de la visualisation des méridiens d’acupuncture. Agressologie.1984;25(10):1107-11

[37]. Meng JB, Gao HH, Wang P, Tian JH, Liu YL. [Primary approach to visualize the courses of channels by use of isotopes]. Zhen Ci Yan Jiu. 1987;12(1):77-81.

[38]. Meng JB, Gang HH, Chang BQ, Weng C, Tian JH, Xu FL, et al. Radionuclide scintigraphy of the meridian system in normal subjects. Acupunct Res 1989;(Suppl 4):1−6.

[39]. Gao H, Meng J, Wen S, Chang B, Li R, Tian J, Xu F, Zhang S. Approach to the characteristics of the movement of qixue in meridians by means of radionuclide imaging. Zhen Ci Yan Jiu. 1990;15(4):315-8. 

[40]. Kovacs FM, Gotzens V, García A, García F, Mufraggi N, Prandi D, Setoain J, San Román F. Experimental study on radioactive pathways of hypodermically injected technetium-99m. J Nucl Med. 1992;33(3):403-7.

[41]. Kovacs FM, Gotzens V, García A, García F, Mufraggi N, Prandi D, Setoain J, San Román F. Kinetics of hypodermically injected technetium-99m and correlation with cutaneous structures: an experimental study in dogs. Eur J Nucl Med. 1993;20(7):585-90.

[42]. Kim J, Bae KH, Hong KS, Han SC, Soh KS. Magnetic resonance imaging and acupuncture: a feasibility study on the migration of tracers after injection at acupoints of small animals. J Acupunct Meridian Stud. 2009;2(2):152-8.

[43]. Simon J, Guiraud G, Lazorthes Y, Esquerre JP, Guiraud R.[Does radioisotope methodology justify the existence of acupuncture meridians?]. Bull Acad Natl Med. 1988 Mar;172(3):363-8.

[44]. Simon J, Guiraud G, Esquerre JP, Lazorthes Y, Guiraud R. Les méridiens d’acupuncture démythifiés. Apport de la méthodologie des radiotraceurs. Presse Med.1988;17(26):1341-4

[45]. Lazorthes Y, Esquerre JP, Simon J, Guiraud G, Guiraud R. Acupuncture meridians and radiotracers. Pain.1990 ;40(1):109-12.

[46]. De Vernejoul P, Albarede P, Darras JC.Nuclear medicine and acupuncture message transmission. J Nucl Med. 1992 ;33(3):409-12.

[47]. Kovacs FM, García A, Mufraggi N, García F, Pavía J, Prandi D, Gotzens V, Giralt I, Piera C, Setoain J. Migration pathways of hypodermically injected technetium-99m in dogs. Eur Radiol. 2000;10(6):1019-25.

[48]. Ma W, Tong H, Xu W, Hu J, Liu N, Li H, Cao L. Perivascular space: possible anatomical substrate for the meridian. J Altern Complement Med. 2003;9(6):851-9.

[49]. Guyton AC. Interstitial fluid presure. 2. Pressure-volume curves of  interstial space. Circ Res. 1965;16:452-60.

[50]. Guyton AC, Scheel K, Murphree D. Interstitial fluid pressure. 3. Its effect on resistance to tissue fluid mobility. Circ Res. 1966;19(2):412-9.

[51]. Guyton AC, Coleman TG. Regulation on interstitial fluid volume and pressure. Ann N Y Acad Sci. 1968;150(3):537-47.

[52]. Zhang WB, Tian YY, Li H, Tian JH, Luo MF, Xu FL, Wang GJ, Huang T, Xu YH, Wang RH. A discovery of low hydraulic resistance channel along meridians. J Acupunct Meridian Stud. 2008;1(1):20-8. 

[53]. Li Hy, Yang JF, Chen M, Xu L, Wang WC, Wang F, Tong JB, Wang CY. Visualized regional hypodermic migration channels of interstitial fluid in human beings: are these ancient meridians? J Altern Complement Med. 2008;14(6):621-8.

[54]. Zhang D, Yao W, Ding GH, Yang J, Schwarz W, Fei Lun S, Liu F, Shen XY, Lao LX. A fluid mechanics model of tissue fluid flow in limb connective tissue - a mechanism of acupuncture signal transmission. Journal of Hydrodynamics, Ser. B. 2009; 21(5):675-684.

[55]. Zhang WB, Zhao Y, Kjell F. Understanding propagated sensation along meridians  by volume transmission in peripheral tissue. Chin J Integr Med. 2013;19(5):330-9.

[56]. Zhang WB, Wang GJ, Fuxe K. Classic and Modern Meridian Studies: A Review of Low Hydraulic Resistance Channels along Meridians and Their Relevance for Therapeutic Effects in Traditional Chinese Medicine. Evid Based Complement

Alternat Med. 2015;2015:410979.

[57]. Zhang WB, Wang Z, Jia S, Tian Y, Wang G, Li H, Fuxe K. Is There Volume Transmission Along Extracellular Fluid Pathways Corresponding to the Acupuncture Meridians? J Acupunct Meridian Stud. 2017;10(1):5-19.

[58]. Fung PC. Probing the mystery of Chinese medicine meridian channels with special emphasis on the connective tissue interstitial fluid system, mechanotransduction, cells durotaxis and mast cell degranulation. Chin Med. 2009;4:10.doi: 10.1186/1749-8546-4-10.

[59]. Langevin HM, Schnyer RN. Reconnecting the Body in Eastern and Western Medicine. J Altern Complement Med. 2017;23(4):238-241.

[60]. Jahed Z, Shams H, Mehrbod M, Mofrad MR. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int Rev Cell Mol Biol. 2014;310:171-220.

[61]. Ciobanasu C, Faivre B, Le Clainche C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol. 2013;92(10-11):339-48.

[62]. MacPherson H, Hammerschlag R, Coeytaux RR, Davis RT, Harris RE, Kong JT, Langevin HM, Lao L, Milley RJ, Napadow V, Schnyer RN, Stener-Victorin E, Witt CM, Wayne PM. Unanticipated Insights into Biomedicine from the Study of Acupuncture. J Altern Complement Med. 2016;22(2):101-7.

[63]. Langevin HM, Keely P, Mao J, Hodge LM, Schleip R, Deng G, Hinz B, Swartz MA, de Valois BA, Zick S, Findley T. Connecting (T)issues: How Research in Fascia Biology Can Impact Integrative Oncology. Cancer Res. 2016;76(21):6159-6162.

[64]. de Valois BA, Young TE, Melsome E. Assessing the feasibility of using acupuncture and moxibustion to improve quality of life for cancer survivors with  upper body lymphoedema. Eur J Oncol Nurs. 2012;16(3):301-9.

[65]. Smith CA, Pirotta M, Kilbreath S. A feasibility study to examine the role of acupuncture to reduce symptoms of lymphoedema after breast cancer: a randomised controlled trial. Acupunct Med. 2014;32(5):387-93.

[66]. Cassileth BR, Van Zee KJ, Chan Y, Coleton MI, Hudis CA, Cohen S, Lozada J, Vickers AJ. A safety and efficacy pilot study of acupuncture for the treatment of chronic lymphoedema. Acupunct Med. 2011;29(3):170-2.

[67]. Godette K, Mondry TE, Johnstone PA. Can manual treatment of lymphedema promote metastasis? J Soc Integr Oncol. 2006;4(1):8-12.